![]() |
|
||||||||||||||||||||||
![]() Это интересно!Новости Нужна антенна? Просто пшикни из баллончика! Новый подход в тестировании объемных кристаллов Семь университетов США пытаются создать квантовую память Петербургский метрополитен переходит на российские светодиоды
Российский рынок электроники 2011/2012: итоги и прогнозы США – самая вредоносная страна в мире От R2-D2 и Терминатора до «Аватара»
Новый стратегический план развития полупроводниковых технологий (ITRS)
|
5 ноября Электронный балласт с регулировкой яркости и входным напряжением 24 В DCУстановки с солнечными панелями на крышах становятся все более популярными по мере того как спрос на экологичные устройства растет, а их стоимость снижается. Поскольку выходной ток таких установок постоянный, необходимы электронные устройства с постоянным входным напряжением питания. В статье представлена схема электронного балласта с регулировкой яркости и DC-входом для люминесцентного освещения. Рассматривается также новый метод регулировки яркости с обратной связью в диапазоне 100…10%.Электронные балласты с переменным входным напряжением питанияТрадиционно схемы электронного балласта проектируются для работы от переменного напряжения энергосети. Стандартные значения входного напряжения составляют 120 В АС (в США и Японии) и 220 В АС (в Европе и Азии). Для преобразования низкочастотного входного переменного напряжения сети в высокочастотное напряжение для люминесцентных ламп применятся 5-каскадное решение. В первом каскаде (см. рис. 1) фильтр электромагнитных помех блокирует шум балласта от попадания на вход. Во втором каскаде применяется стандартный полномостовой выпрямитель для преобразования переменного напряжения в двухполупериодное выпрямленное напряжение. На третьей ступени используется повышающий каскад AC/DC, который преобразует это напряжение в более высокое постоянное напряжение шины.
Постоянное напряжение поступает со входа на фильтр электромагнитных помех, а затем напрямую в повышающий каскад. 24-В напряжение повышается до 400 В на шине, а затем преобразуется в высокочастотный (ВЧ) сигнал прямоугольной формы с помощью полумостовой коммутационной цепи. Это напряжение питает выходной резонансный контур, управляющий лампой. В пушпульной конфигурации (см. рис. 2) используется повышающий трансформатор для преобразования входного напряжения 24 В в высоковольтное ВЧ-напряжение прямоугольной формы за один этап.
Топология повышающего каскада схожа с решением, в котором на вход подается переменное напряжение, за исключением того, что габариты цепи повышающего преобразователя другие из-за более высокого коэффициента преобразования и иные типоразмеры силовых компонентов, управляющих более высокими токами при более низком напряжении. Преимущество повышающего каскада в том, что на шине DC поддерживается постоянное напряжение, не зависящее от входного. Возможность схемы работать в широком диапазоне входного напряжения имеет выгодное преимущество при питании балласта от солнечных элементов, т.к. их выходное напряжение в значительной степени зависит от уровня солнечного излучения и температуры. Новый метод регулировки яркостиПолная схема регулировки яркости с пушпульной топологией (см. рис. 3) имеет входной фильтр шума балласта, ИС управления, пушпульный повышающий каскад для формирования высоковольтного ВЧ-напряжения прямоугольной формы и выходной резонансный контур для разогрева, зажигания и регулировки яркости люминесцентной лампы. Дополнительная цепь регулировки яркости включает изолированный интерфейс 0…10 В DC, токочувствительную цепь для измерения тока лампы и цепь с обратной связью, позволяющую регулировать этот ток путем изменения выходной частоты. Замкнутый контур обратной связи необходим для регулировки тока люминесцентной лампы, имеющей нелинейные электрические характеристики.
В новом методе регулировки яркости лампы используется токочувствительная цепь и цепь обратной связи. Для измерения переменного тока лампы применяется токочувствительный резистор RCS (см. рис. 4).
Измеренный сигнал, прошедший через CFB и RFB цепи обратной связи, суммируется с постоянным опорным напряжением. Результирующий сигнал AC+DC сравнивается с потенциалом земли (COM), а частота изменяется таким образом, чтобы амплитудное значение отрицательной полуволны переменного тока удерживалось на уровне COM.
При регулировке яркости резонансный контур представляет собой последовательно соединенную индуктивность L и параллельную цепочку RC с низкой добротностью при 100-% яркости и высокой добротностью — при 10-% значении.
По мере уменьшения частоты катоды лампы подогреваются током резонансного контура. Когда частота достигает резонансного значения частоты контура, выходное напряжение на лампе возрастает. Лампа зажигается, если выходное напряжение превышает пороговое напряжение зажигания лампы. Начинает течь ток, которым управляет цепь обратной связи, благодаря чему устанавливается требуемая яркость.
Схема 30-Вт балласта регулировки яркостиПолная схема балласта приведена на рисунке 7.
Входное напряжение 24 В DC поступает через фильтр электромагнитных помех, за которым следует конденсатор шины DC. Пушпульный коммутационный каскад управляется ИС IRS2530D, обеспечивающей нагрев, поджигание и регулировку яркости лампы. Проходящий через резистор ток вызывает падение напряжения, питающего ИС. Стоки пушпульных МОП-транзисторов подключены к центральной точке первичной обмотки повышающего трансформатора. Далее напряжение шины 24 В DC повышается и преобразуется в ВЧ-напряжение прямоугольной формы 300 Вp-p на вторичной обмотке, служащей для управления выходным резонансным контуром. Резонансная цепь обеспечивает функцию передачи для генерации высокого напряжения зажигания лампы и НЧ-фильтрацию для регулировки яркости. Рис. 8. Измеренные сигналы мини-балласта
Амплитуда напряжения на DIM-выводе уменьшается (вместе с током лампы) со 100 до 10%, при этом рабочая частота непрерывно изменяется для удержания амплитуды отрицательной полуволны переменного тока на уровне COM.
ЗаключениеПреимущество электронных балластов, управляемых постоянным входным напряжением, состоит в отсутствии необходимости выпрямления входного напряжения и использования каскада коэффициента мощности. Дальнейшее упрощение схемы с помощью трехступенчатой пушпульной топологии дает дополнительные преимущества за счет исключения повышающего каскада, что позволяет снизить стоимость, обеспечить изоляцию и увеличить соотношение лм/Вт. Новый успешный метод управления током лампы с использованием обратной связи позволяет работать в широком диапазоне постоянного входного напряжения и установить защиту от условий отказа.
Литература1. P. Green, AN-1038: Low Voltage DC Supply Dimmable Ballast for 1x36W Lamp//www.irf.com/technical-info/appnotes/an-1038.pdf.
|
![]() ![]() Комментарии читателейГорячие темы |
||||||||||||||||||||
|
||||||||||||||||||||||
![]() |
![]() |
|||||||||||||||||||||
|
|